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D e fi n i t i o n

The open ball centered around x0 ∈ Rn and radius r > 0 is defined as

B(x0, r) = {x ∈ Rn| ||x − x0|| < r}

while the closed ball centered around x0 and radius r > 0 is

B(x0, r) = {x ∈ Rn| ||x − x0|| ≤ r}
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D e fi n i t i o n

Let A ⊂ Rn. x0 ∈ A is interior, if there is ε > 0 such that B(x0, ε) ⊆ A.
Let A ⊆ Rn, the interior of A, denoted as int(A), is the set of all its interior
points, int(A) = {x ∈ A|∃ε > 0,B(x0, ε) ⊆ A}.
The set A ⊆ Rn is open if A \ int(A) = ∅.
The set A is closed if Ac is open.
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D e fi n i t i o n

The closure of A, denoted as A, is the smallest closed set that contains A.
The boundary of A, denoted as ∂A, is defined as A \ int(A).

D e fi n i t i o n

A ⊂ Rn is bounded if there is an open ball that contains A.

D e fi n i t i o n

A set A ⊆ Rn is said to be compact if it is closed and bounded.
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D e fi n i t i o n

A sequence is any function f : N→ R.

D e fi n i t i o n

The sequence xt converges to x0 if, for any open ball B containing x0, exists tε ∈ N
such that for t ≥ tε, xt ∈ B. It is denoted as xt → x0. x0 is called the limit of xt .

C o n j e c t u r e

If a sequence converges, then its limit is unique.

You know what is coming, ... ... Quiz! Think on a way to prove it... 10 min.
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P r o o f .

Assume it is not unique, so:
1. xt → x0 and also xt → x1, and x1 6= x0.
2. ∃t0ε , t1ε ∈ N such that for t∗ε > m a x {t0ε , t1ε } xt ∈ B(t0, ε) and xt ∈ B(t1, ε)

∀t > t∗.
3. Let |x0 − x1| = δ. Choose ε = δ/2. So there is t∗ such that |xt − x0| < δ/2 and

|xt − x1| < δ/2.
|x0−x1| = |x0−xt+xt−x1| = |(x0−xt)+(−x1+xt)| ≤ |x0−xt |+|x1−xt | < 2ε = δ,
contradiction!
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D e fi n i t i o n

The sequence xt is increasing if for any t ∈ N, xt ≤ xt+1 ∈ R.
If xt is increasing, it is called bounded from above if xt ≤ c, ∀t ∈ N.

C o n j e c t u r e

If the sequence xt is increasing and bounded from above, then it converges.
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D e fi n i t i o n

Let xt be a sequence. A subsequence of xt is a sequence built by removing some of
the elements of xt without changing its order. Let φ : N→ N be increasing, then
yt = xφ(t) is a subsequence of xt .

D e fi n i t i o n

Given a sequence xt , x∗ is a cluster point of xt , if there is a subsequence of xt that
converges to x∗.
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C o n j e c t u r e

A bounded sequence converges if and only if it has only one cluster point.
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Let x∗
1 , x∗

2 , ..., x∗
p be cluster points of xt .

D e fi n i t i o n

The limit superior (a.k.a. greatest limit, maximum limit, upper limit, lim sup,
lim) of xt is defined as m a x {x∗

1 , x∗
2 , ..., x∗

p}.
The limit inferior (a.k.a. least limit, minimum limit, lower limit, lim inf, lim) of
xt is defined as m i n {x∗

1 , x∗
2 , ..., x∗

p}.
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C o n j e c t u r e

Let A ⊆ Rn.
A is closed if and only if any convergent sequence xt ⊆ A has its limit in A. If
xt ⊆ A, xt → x0 ⇔ x0 ∈ A.
A is compact if and only if for any sequence xt ⊆ A, there is a convergent
subsequence.
A = {x∗|∃xt ∈ A, xt → x∗}
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D e fi n i t i o n

Let A,C ⊆ Rn such that C ⊆ A. We’ll say that C is dense in A if and only if C = A.
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D e fi n i t i o n

Consider f : Rm → Rn. f (x) converges to α ∈ Rn when x ∈ Rm goes to x0 ∈ Rm, if
for any sequence xn → x0, f (xn) → α. This is written as l i m x→x0 f (x) = α.

D e fi n i t i o n

f : Rm → Rm is continuous in x0 ∈ Rm if, for any sequence xt → x0 it holds that
f (xt) → f (x0)

D e fi n i t i o n

If f : Rm → Rn is continuous for all x0 ∈ A ⊆ Rm, then it is continuous in A.
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A more conventional definition of continuity is:

D e fi n i t i o n

A function is said to be continuous on the set S ⊆ Rn if for every a ∈ S, and any
ε > 0 there exists δ such that for any x ∈ S that satisfies |x − a| ≤ δ implies
|f (x)− f (a)| ≤ ε.
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C o n j e c t u r e

The sum, product, division or composition of continuous functions is continuous.

C o n j e c t u r e

Let A ⊆ Rm, and given F = {f : A → Rm, f continuous in A}, it holds that F is a
vector space.
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C o n j e c t u r e

Let K ⊆ Rn be compact and f : Rn → Rm a continuous function. Then f (K) is
compact.
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P r o o f .

Take a sequence yn ∈ f (K) that converges to some y (not necessarily in f (K)). Then,
by definition ∃xn ∈ K such that f (xn) = yn. Because K is compact, there is a
subsequence of xn, say xnj that converges to some x0 ∈ K . Now, by continuity of f , we
have that y = f (x0) ∈ f (K) and f (K) is closed.

Let’s check if it is bounded. Assume it is not, and let zn be a sequence in f (K) such
that zn ≥ n for n ∈ N. Again, repeating the argument we can get that there is some
subsequence snj in K , such that f (snj ) = zn, and that converges to some ŝ ∈ K ,
because K is compact. However:

∞ = l i m
n→∞

zn ≤ l i m
j→∞

f (snj ) = f (ŝ)

by the continuity of f , which is a contradiction (we found an upper bound for
infinity!).
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D e fi n i t i o n

Let K ⊆ Rn and f : K → R. The maximum(xM) and the minimum(xm) of f are
defined as:

f (xM) ≥ f (x) ∀x ∈ K
f (xm) ≤ f (x) ∀x ∈ K

These are also known as global maximum and global minimum

C o n j e c t u r e

Let f : K → R be continuous and K compact, then xM and xm exist.
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D e fi n i t i o n

A set A is said to be connected if, for any a, b ∈ A, there is a continuous function
φ : [0, 1] → A, such that φ(0) = a and φ(1) = b.

T h e o r e m ( B o l z a n o )

Let f : R→ R continuous. Let a, b ∈ R such that f (a) < 0 and f (b) > 0, then there
is c ∈ R such that f (c) = 0.

T h e o r e m ( W e i e r s t r a s s )

Let [a, b] ⊆ R, let f : [a, b] → R continuous. Then for any u ∈ (a, b), there is at least
one c such that f (c) = u.

P. Fagandini



B o l z a n o ’ s .

We start with interval I0 = (a0 = a, b0 = b). Define d = b+a
2 . There are only three

possibilities:
1. f (d) = 0 and therefore the proof is complete, and c = d .
2. f (d) < 0, and we define interval I1 = (a1 = d , b1 = b0)
3. f (d) > 0, and we define interval I1 = (a1 = a0, b1 = d)

Note that I1 ⊂ I0, with half the length. Repeat and build a sequence of open intervals,
where In ⊂ In+1 with f (an) < 0 < f (bn). Define c2n = an and c2n+1 = bn, you have
that the sequence ci converges by the Cauchy criterion, as for m > n we have
|cm − cn| ≤ 2−n/2|I0|. Then cn → c ∈ [a, b], and given that an and bn are
subsequences, they converge to the same limit.
Given f continuous, xn → x ⇒ f (xn) → f (x). We set a such that f (an) ≤ 0, but
l i m n→∞ f (an) = f (c) ≤ 0, and the same can be said for bn, l i m n→∞ f (bn) = f (c) ≥ 0,
but if f (c) ≤ 0 and f (c) ≥ 0 then it must be that f (c) = 0.
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B r o u w e r fi x e d p o i n t t h e o r e m i n R

T h e o r e m

Let f : K → K continuous, with K ⊆ R compact and convex.1 Then there is x such
that f (x) = x.

P r o o f .

Let f : [0, 1] → [0, 1] continuous.
Let g(x) = f (x)− x .
g(0) = f (0)− 0 = f (0), but f (0) ≥ 0, so g(0) ≥ 0

g(1) = f (1)− 1, but f (1) ≤ 1, so f (1)− 1 ≤ 0, or g(1) ≤ 0.
Then, because of the proposition we just saw, there must be x such that
g(x) = 0, or f (x) = x .

1A.k.a. interval.
P. Fagandini



T h e o r e m ( B r o w e r fi x e d p o i n t i n Rn
)

Consider Bn ⊆ Rn the unit open ball (an open ball of radius 1). Let f : Bn → Bn
continuous. Then f has a fixed point in Bn, that is, there is x∗ ∈ Bn such that
f (x∗) = x∗.
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D e fi n i t i o n

f : Rn → Rn is called locally Lipschitz continuous if for any x0 ∈ Rn, there is a
neighborhood Vx0 and a constant L > 0 such that for any x , y ∈ Vx0 it holds that

||f (x)− f (y)|| ≤ L||x − y ||

L is called the Lipschitz constant.
If L does not depend on x0, it is called simply a Lipschitz continuous, and
furthermore, if L < 1 it is called a contraction.
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T h e o r e m ( B a n a c h fi x e d p o i n t )

If f : Rn → Rn is a contraction, then there is a single x∗ ∈ Rn such that f (x∗) = x∗.
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